Affiliation:
1. Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
2. Mathematics Department, Faculty of Science, Tanta University, Tanta, P.O. Box 31527, Egypt
Abstract
In this paper, we present new modifications for some perturbation procedures used in mathematics, physics, astronomy, and engineering. These modifications will help us to solve the previous problems in different sciences under new conditions. As problems, we have, for example, the rotary rigid body problem, the gyroscopic problem, the pendulum motion problem, and other ones. These problems will be solved in a new manner different from the previous treatments. We solve some of the previous problems in the presence of new conditions, new analysis, and new domains. We let complementary conditions of such studied previously. We solve these problems by applying the large parameter technique used by assuming a large parameter which inversely proportional to a small quantity. For example, in rigid body dynamic problems, we take such quantity to be one of the components of the angular velocity vector in the initial instant of the rotary body about a fixed point. The domain of our solutions will be depending on the choice of a large parameter. The problem of slow (weak) oscillations is considered. So, we obtain slow motions of the bodies instead of fast motions and find the solutions of the problem in present new conditions on both of center of gravity, moments of inertia, and the angular velocity vector or one of these parameters of the body. This study is important for aerospace engineering, gyroscopic motions, satellite motion which has the correspondence of inertia moments, antennas, and navigations.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献