Sufficiently small rotations of Lagrange’s gyro

Author:

Ismail AI1ORCID,Amer TS2ORCID,Amer WS3ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia

2. Mathematics Department, Tanta University, Tanta, Egypt

3. Mathematics and Computer Science Department, Menoufia University, Egypt

Abstract

In this study, the motion of Lagrange’s gyro about its fixed point in the presence of a perturbed torque, a gyroscopic torque, and a varied restoring one is searched. We assume sufficiently small angular velocity components in the direction of the principal axes that differ from the dynamical symmetry one and a restoring torque that is considered to be greater than the perturbing one. In this manner, we replace the familiar small parameter that was used in previous works with a large one. In such cases, the gyro equations for motion (EOM) are formulated in the form of a two-degrees-of-freedom (DOF) autonomous system. We average the obtained system to get periodic solutions and motion’s geometric interpretation of the problem using the large parameter. The regular precession and the pure rotation of the motion are obtained. A numerical study is evaluated for asserted the used techniques and showed the influence of the changing parameters of motion on the gyro behavior. The trajectories of the motions and their stabilities are discussed and analyzed. The novelty of this work lies in how to adapt the method of large parameter (MLP) to solve the rigid body problem, especially since it has been assumed initially that its angular velocity or its initial energy are very small. MSC (2000): 70E20, 70E17, 70E15, 70E05

Funder

The Deanship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics Solution and Characteristics Analysis of a 6-SPS Passive Vibration Isolator Based on MS-DT-TMM;Journal of Vibration Engineering & Technologies;2023-09-09

2. Simulation of a Subjected Rigid Body Motion to an External Force and Moment;Journal of Vibration Engineering & Technologies;2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3