Taxonomy of Adaptive Neuro-Fuzzy Inference System in Modern Engineering Sciences

Author:

Chopra Shivali1ORCID,Dhiman Gaurav2ORCID,Sharma Ashutosh3ORCID,Shabaz Mohammad45ORCID,Shukla Pratyush6ORCID,Arora Mohit1ORCID

Affiliation:

1. Lovely Professional University, Phagwara, Punjab, India

2. Government Bikram College of Commerce, Patiala, Punjab, India

3. Institute of Computer Technology and Information, Security Southern Federal University, Taganrog, Russia

4. Arba Minch University, Arba Minch, Ethiopia

5. Institute of Engineering and Technology, Chitkara University, Punjab, Chandigarh, India

6. New York University, New York City, NY, USA

Abstract

Adaptive Neuro-Fuzzy Inference System (ANFIS) blends advantages of both Artificial Neural Networks (ANNs) and Fuzzy Logic (FL) in a single framework. It provides accelerated learning capacity and adaptive interpretation capabilities to model complex patterns and apprehends nonlinear relationships. ANFIS has been applied and practiced in various domains and provided solutions to commonly recurring problems with improved time and space complexity. Standard ANFIS has certain limitations such as high computational expense, loss of interpretability in larger inputs, curse of dimensionality, and selection of appropriate membership functions. This paper summarizes that the standard ANFIS is unsuitable for complex human tasks that require precise handling of machines and systems. The state-of-the-art and practice research questions have been discussed, which primarily focus on the applicability of ANFIS in the diversifying field of engineering sciences. We conclude that the standard ANFIS architecture is vastly improved when amalgamated with metaheuristic techniques and further moderated with nature-inspired algorithms through calibration and tuning of parameters. It is significant in adapting and automating complex engineering tasks that currently depend on human discretion, prominent in the mechanical, electrical, and geological fields.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3