Conditional TransGAN-Based Data Augmentation for PCB Electronic Component Inspection

Author:

Wang Chenglong1ORCID,Huang Guanghan2,Huang Zhiyuan2,He Weiming2

Affiliation:

1. School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516007, Guangdong, China

2. Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China

Abstract

Automatic recognition and positioning of electronic components on PCBs can enhance quality inspection efficiency for electronic products during manufacturing. Efficient PCB inspection requires identification and classification of PCB components as well as defects for better quality assurance. The small size of the electronic component and PCB defect targets means that there are fewer feature areas for the neural network to detect, and the complex grain backgrounds of both datasets can cause significant interference, making the target detection task challenging. Meanwhile, the detection performance of deep learning models is significantly impacted due to the lack of samples. In this paper, we propose conditional TransGAN (cTransGAN), a generative model for data augmentation, which enhances the quantity and diversity of the original training set and further improves the accuracy of PCB electronic component recognition. The design of cTransGAN brings together the merits of both conditional GAN and TransGAN, allowing a trained model to generate high-quality synthetic images conditioned on the class embeddings. To validate the proposed method, we conduct extensive experiments on two datasets, including a self-developed dataset for PCB component detection and an existing dataset for PCB defect detection. Also, we have evaluated three existing object detection algorithms, including Faster R-CNN ResNet101, YOLO V3 DarkNet-53, and SCNet ResNet101, and each is validated under four experimental settings to form an ablation study. Results demonstrate that the proposed cTransGAN can effectively enhance the quality and diversity of the training set, leading to superior performance on both tasks. We have open-sourced the project to facilitate further studies.

Funder

Guangdong Special Projects in Key Areas for Colleges

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CGDGMDA-Net: discovering microbe-disease and drug associations through CTGAN and graph-based deep learning;Network Modeling Analysis in Health Informatics and Bioinformatics;2024-09-02

2. STFE-YOLOX: A Small Target Recognition Network for Surface Mount Component Detection;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

3. A bearing surface defect detection method based on multi-attention mechanism Yolov8;Measurement Science and Technology;2024-05-08

4. U2D2PCB: Uncertainty-Aware Unsupervised Defect Detection on PCB Images Using Reconstructive and Discriminative Models;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3