A bearing surface defect detection method based on multi-attention mechanism Yolov8

Author:

Ding PengchengORCID,Zhan HongfeiORCID,Yu Junhe,Wang Rui

Abstract

Abstract Surface defects in bearings not only affect the appearance but also impact the service life and performance. Therefore, it is imperative for bearing manufacturers to conduct quality inspections before bearings leave the factory. However, traditional visual inspection methods exhibit shortcomings such as high omission rates, insufficient feature fusion and oversized models when dealing with multiple target defects in bearings. To address these challenges, this paper proposes a surface defect detection method for bearings based on an improved Yolov8 algorithm (G-Yolov8). Firstly, a C3Ghost convolutional module based on the Ghost module is constructed in YOLOv8 to simplify model computational costs. Secondly, a global attention mechanism module is designed at the end of the backbone network to increase sensitivity to implicit small target area features and optimize feature extraction efficiency. Subsequently, a deep deformable convolution feature pyramid network is constructed by introducing the deformable convolutional networks version 2 (DCNv2) and the lightweight content-aware reassembly of features upsampling operator to reduce sampling information loss and improve the fusion of multi-scale target defects. Finally, different attention mechanisms are embedded in the detection network to construct a multi-attention detection head to replace the decoupled head, refining classification and localization tasks, reducing feature confusion, and improving the model’s detection accuracy. Experimental results demonstrate that the improved algorithm achieves a 3.5% increase in mean average precision on a self-made small-scale train bearing surface defect dataset, with a 17.3% reduction in model size. This improvement not only enhances accuracy but also addresses the requirement for lightweight deployment in subsequent stages.

Funder

Provincial Universities of Zhejiang

National Key R&D Program of China

Publisher

IOP Publishing

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GS-YOLOv8: An improved UAV target detection algorithm based on YOLOv8;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3