Albiflorin Alleviates Ox-LDL-Induced Human Umbilical Vein Endothelial Cell Injury through IRAK1/TAK1 Pathway

Author:

Liu Yeling1,Sun Yilai2,Bai Xue3,Li Lingxing3ORCID,Zhu Guihua1ORCID

Affiliation:

1. Department of Pharmacy, Tai’an City Central Hospital, Tai’an, Shandong 271000, China

2. Department of Pancreatic & Hernial Surgery Tai’an City Central Hospital, Tai’an, Shandong 271000, China

3. Department of Cardiovascular Medicine, Tai’an City Central Hospital, Tai’an, Shandong 271000, China

Abstract

Introduction. Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid metabolism disorder and vascular endothelial damage. Albiflorin (AF) has been certified to be effective in the therapy of certain inflammatory diseases, while the therapeutic effect and mechanism of AF on AS have not been fully elucidated. Material and Methods. Model cells for AS were created by inducing oxidized low-density lipoprotein (Ox-LDL) in human umbilical vein endothelial cells (HUVECs). After processing with AF and interleukin-1 receptor-associated kinase 1- (IRAK1-) overexpressed plasmid, cell viability was assessed by CCK-8; cholesterol efflux was tested using liquid scintillation counter; IL-6 and TNF-α levels were determined with ELISA kits; ROS and apoptosis were confirmed using Flow cytometry. Besides, IRAK1-TAK1 pathway and apoptosis- and mitochondrial fusion-related proteins were monitored with western blotting analysis. Results. Our results verified that AF could not only dramatically accelerate viability and cholesterol efflux but also attenuate inflammation, ROS production, and apoptosis in Ox-LDL-induced HUVECs. Meanwhile, AF could prominently prevent the activation of IRAK1-TAK1 pathway, downregulate apoptosis-related proteins, and upregulate mitochondrial fusion-related proteins in Ox-LDL-induced HUVECs. Moreover, we testified that IRAK1 overexpression memorably could reverse suppression of AF on inflammation, apoptosis, and IRAK1-TAK1 pathway and enhancement of AF on viability, cholesterol efflux, and mitochondrial fusion in Ox-LDL-induced HUVECs. Conclusions. By blocking the IRAK1/TAK1 pathway, AF can significantly slow the course of AS, suggesting that it could be a viable therapeutic option for AS.

Funder

Tai’an City Science and Technology Development Program

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3