Albiflorin Inhibits Advanced Glycation End Products-Induced ROS and MMP-1 Expression in Gingival Fibroblasts

Author:

Gao Linlin1,Fu Wenqi2,Liu Yanyan3,Fan Lili3,Liu Shiwei1,Zhang Nan3

Affiliation:

1. Department of Endocrinology, Endocrine and Metabolic Diseases Key Laboratory of Shanxi Province, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China

2. Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea

3. Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China

Abstract

Background: Periodontitis is a common complication of diabetes, with advanced glycation end products (AGEs) playing a key role in its pathogenesis. Albiflorin, a monoterpene glycoside, has shown potential anti-inflammatory and antioxidant properties. This study aims to investigate the effects of albiflorin on AGEs-induced gingival fibroblasts and its underlying mechanisms. Objective: This study aimed to evaluate the role of albiflorin in mitigating ROS production, inflammation, and MMP-1 expression in AGEs-induced gingival fibroblasts. objective: / Methods: The viability of gingival fibroblasts treated with albiflorin and AGEs was assessed using CCK-8 assays. ROS levels were measured by DCF staining, and the expression of inflammatory markers and MMP-1 was evaluated by ELISA and qPCR. The involvement of the NF-κB and Nrf2 pathways was examined by immunoblotting. Results: Albiflorin enhanced the viability of AGEs-induced gingival fibroblasts and reduced ROS production. It also decreased the expression of IL-6, IL-8, RAGE, and MMP-1, suggesting an anti- inflammatory effect. Mechanistically, albiflorin modulated the NF-κB and Nrf2 pathways in AGEs-induced gingival fibroblasts. Conclusion: Albiflorin exhibited protective effects against AGEs-induced oxidative stress and inflammation in gingival fibroblasts, highlighting its potential as a therapeutic agent for periodontitis in diabetic patients. The modulation of the NF-κB and Nrf2 pathways by albiflorin provides insight into its mechanism of action. other: /

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3