Research on Optimization of the AGV Shortest-Path Model and Obstacle Avoidance Planning in Dynamic Environments

Author:

Liu Ruixi1ORCID

Affiliation:

1. Chongqing Police College, No. 666 Jing Zheng Road, Chongqing, China

Abstract

This paper proposes a support vector machine (SVM)-based AGV scheduling strategy that enhances the scheduling efficiency of automated guided vehicles (AGVs) in intelligent factories. The developed scheme optimizes the task area division process to endow the AGVs with the ability to avoid obstacles in complex dynamic environments. Specifically, given the two AGV motion cases, i.e., towards a single target point and multiple target points, the optimal path was determined utilizing the exhaustive and the Q-learning methods, while path optimization was realized by utilizing different schemes. Based on the shortest path obtained, a nonlinear programming model with the shortest time as the objective was built, and the AGV’s turning path was proved to be optimal by the non-dominated sorting genetic algorithm (NSGA-II). Several simulation tests and calculation results validated the proposed method’s effectiveness, highlighting that the developed scheme is a rational solution to the obstacle congestion and deadlock problems. Moreover, the experimental results demonstrated the proposed method’s superiority in path planning accuracy and its ability to respond well in complex dynamic environments. Overall, this research provides a reference for developing and applying AGV cluster scheduling in real operational scenarios.

Funder

Innovation Training Program for University Students

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combination A*-Dynamic Window Path Planning Algorithm in Rail Port AGV container transport;2023 International Conference on Frontiers of Robotics and Software Engineering (FRSE);2023-06

2. Quantification and propagation of Aleatoric uncertainties in topological structures;Reliability Engineering & System Safety;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3