Texture Image Compression Algorithm Based on Self-Organizing Neural Network

Author:

Han Jianmin1ORCID

Affiliation:

1. School of Computer Engineering, Henan Economic and Trade Vocational College, Zhengzhou, Henan 450046, China

Abstract

With the rapid development of science and technology, human beings have gradually stepped into a brand-new digital era. Virtual reality technology has brought people an immersive experience. In order to enable users to get a better virtual reality experience, the pictures produced by virtual skillfully must be realistic enough and support users' real-time interaction. So interactive real-time photorealistic rendering becomes the focus of research. Texture mapping is a technology proposed to solve the contradiction between real time and reality. It has been widely studied and used since it was proposed. However, due to limited bandwidth and memory storage, it brings challenges to the stain dyeing of many large texture images, so texture compression is introduced. Texture compression can improve the utilization rate of cache but also greatly reduce the pressure on data transmission caused by the system, which largely solves the problem of real-time rendering of realistic graphics. Due to the particularity of texture image compression, it is necessary to consider not only the quality of texture image after compression ratio and decompression but also whether the algorithm is compatible with mainstream graphics cards. On this basis, we put forward the texture image compression method based on self-organizing mapping, the experiment results show that our method has achieved good results, and it is superior to other methods in most performance indexes.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference34 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3