SOSPCNN: Structurally Optimized Stochastic Pooling Convolutional Neural Network for Tetralogy of Fallot Recognition

Author:

Wang Shui-Hua1,Wu Kaihong2,Chu Tianshu3,Fernandes Steven L.4,Zhou Qinghua1,Zhang Yu-Dong13ORCID,Sun Jian2ORCID

Affiliation:

1. School of Informatics, University of Leicester, Leicester LE1 7RH, UK

2. The Affiliated Children’s Hospital of Nanjing Medical University, Nanjing, China

3. Nanjing Yirongda Institute of Intelligent Medicine and Additive Manufacturing, Nanjing, China

4. Department of Computer Science, Design & Journalism, Creighton University, Omaha, Nebraska, USA

Abstract

Aim. This study proposes a new artificial intelligence model based on cardiovascular computed tomography for more efficient and precise recognition of Tetralogy of Fallot (TOF). Methods. Our model is a structurally optimized stochastic pooling convolutional neural network (SOSPCNN), which combines stochastic pooling, structural optimization, and convolutional neural network. In addition, multiple-way data augmentation is used to overcome overfitting. Grad-CAM is employed to provide explainability to the proposed SOSPCNN model. Meanwhile, both desktop and web apps are developed based on this SOSPCNN model. Results. The results on ten runs of 10-fold crossvalidation show that our SOSPCNN model yields a sensitivity of 92.25 ± 2.19 , a specificity of 92.75 ± 2.49 , a precision of 92.79 ± 2.29 , an accuracy of 92.50 ± 1.18 , an F1 score of 92.48 ± 1.17 , an MCC of 85.06 ± 2.38 , an FMI of 92.50 ± 1.17 , and an AUC of 0.9587. Conclusion. The SOSPCNN method performed better than three state-of-the-art TOF recognition approaches.

Funder

Global Challenges Research Fund

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3