Synthesis of Spherical Bi2WO6Nanoparticles by a Hydrothermal Route and Their Photocatalytic Properties

Author:

Wang B.1,Yang H.1,Xian T.1,Di L. J.1,Li R. S.1,Wang X. X.1

Affiliation:

1. School of Science, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Spherical Bi2WO6nanoparticles were synthesized by a hydrothermal route. SEM observation shows that the size of the particles ranges from 60 to 120 nm and the average particle size is ~85 nm. TEM investigation shows that the particles are made up of subgrains with size of 5–10 nm. The bandgap energy of the particles is measured to be 2.93 eV by ultraviolet-visible diffuse reflectance spectroscopy. RhB was chosen as the target pollutant to evaluate the photocatalytic activity of the particles under irradiation of simulated sunlight, revealing that they exhibit an obvious photocatalytic activity. The effects of ethanol, KI, and BQ on the photocatalytic efficiency of Bi2WO6particles towards the RhB degradation were investigated. It is observed that ethanol has no effect on the photocatalytic degradation of RhB, whereas KI and BQ exhibit a substantial suppression of RhB degradation. No hydroxyl (•OH) is found, by the photoluminescence technique using terephthalic acid as a probe molecule, to be produced over the irradiated Bi2WO6particles. Based on the experimental results, photoexcited hole (h+) and superoxide (•O2-) are suggested to be the two main active species responsible for the dye degradation, while •OH plays a negligible role in the photocatalysis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3