Structural, linear/non-linear optical, and optoelectrical properties of PVB/Bi2WO6 nanocomposite for industrial applications

Author:

Alziyadi Mohammed O.1,Alkabsh Asma2,Said Basmat Amal M.3,Shalaby Mustafa S.4ORCID

Affiliation:

1. Department of Physics, College of Science and Humanities-Shaqra, Shaqra University, Riyadh, Saudi Arabia

2. Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia

3. College of Pharmacy, Al-Mustaqbal University, Babylon, Iraq

4. Solid-State Physics and Accelerators Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt

Abstract

Nanocomposite films composed of polyvinyl butyral (PVB) and Bi2WO6 were produced through solution casting. The goal of this investigation was to examine the effects of different Bi2WO6 concentrations (0%, 2%, and 4% wt.) on the linear/non-linear optical and optoelectrical properties, as well as the structure and dispersion of films of PVB/Bi2WO6 nanocomposite. The direct band gap Eg1 value falls from 5.1 eV to 3.83 eV with the progressive increase in Bi2WO6 content from 0% to 4% wt., while indirect band gap Eg2 decreased from 4.1 eV to 2.89 eV. Conversely, the PVB + 4% Bi2WO6 nanocomposite increased Urbach’s energy (EU) from 1.00 eV for pure PVB to 1.97 eV. Moreover, our research has documented the impact of different concentrations of Bi2WO6 on a range of optical properties, including the refractive index ( n), extinction coefficient ( k), and other pertinent parameters. Utilizing the real and imaginary components of the dielectric constants εr and εi, an investigation was carried out into the dielectrics’ behavior and the optoelectrical parameters’ calculation. Furthermore, investigations were performed on the linear optical susceptibility, the non-linear refractive index, and the third-order non-linear optical susceptibility concerning the concentrations of Bi2WO6. In addition, the results indicated that varying Bi2WO6 concentrations substantially affect the oscillator strength, average oscillator wavelength, and optical conductivity. The nanocomposite films of PVB/Bi2WO6 concentrations exhibited favorable associations between their optoelectrical and non-linear/linear optical parameters, rendering them viable candidates for implementation in flexible electronic devices and radiation shielding.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3