Modified Neural Network Algorithms for Predicting Trading Signals of Stock Market Indices

Author:

Tilakaratne C. D.1,Mammadov M. A.2,Morris S. A.2

Affiliation:

1. Department of Statistics, University of Colombo, P.O. Box 1490, Colombo 3, Sri Lanka

2. Graduate School of Information Technology and Mathematical Sciences, University of Ballarat, P.O. Box 663, Ballarat, Victoria 3353, Australia

Abstract

The aim of this paper is to present modified neural network algorithms to predict whether it is best to buy, hold, or sell shares (trading signals) of stock market indices. Most commonly used classification techniques are not successful in predicting trading signals when the distribution of the actual trading signals, among these three classes, is imbalanced. The modified network algorithms are based on the structure of feedforward neural networks and a modified Ordinary Least Squares (OLSs) error function. An adjustment relating to the contribution from the historical data used for training the networks and penalisation of incorrectly classified trading signals were accounted for, when modifying the OLS function. A global optimization algorithm was employed to train these networks. These algorithms were employed to predict the trading signals of the Australian All Ordinary Index. The algorithms with the modified error functions introduced by this study produced better predictions.

Publisher

Hindawi Limited

Subject

Applied Mathematics,Computational Mathematics,Statistics and Probability,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3