Multiview Feature Fusion Attention Convolutional Recurrent Neural Networks for EEG-Based Emotion Recognition

Author:

Xin Ruihao12,Miao Fengbo1,Cong Ping1,Zhang Fan1,Xin Yongxian3,Feng Xin45ORCID

Affiliation:

1. College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 130000, China

2. College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China

3. College of Business and Economics, Australian National University, ACT, Canberra, 2601, Australia

4. School of Science, Jilin Institute of Chemical Technology, Jilin, Jilin, 130000, China

5. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China

Abstract

Emotion recognition is essential for computers to understand human emotions. Traditional EEG emotion recognition methods have significant limitations. To improve the accuracy of EEG emotion recognition, we propose a multiview feature fusion attention convolutional recurrent neural network (multi-aCRNN) model. Multi-aCRNN combines CNN, GRU, and attention mechanisms to fuse features from multiple perspectives deeply. Specifically, multiscale CNN can unite elements in the frequency and spatial domains through the convolution of different scales. The role of the attention mechanism is to weigh the frequency domain and spatial domain information of different periods to find more valuable temporal perspectives. Finally, the implicit feature representation is learned from the time domain through the bidirectional GRU to achieve the profound fusion of features from multiple perspectives in the time domain, frequency domain, and spatial domain. At the same time, for the noise problem, we use label smoothing to reduce the influence of label noise to achieve a better emotion recognition classification effect. Finally, the model is validated on the EEG data of 32 subjects on a public dataset (DEAP) by fivefold cross-validation. Multi-aCRNN achieves an average classification accuracy of 96.43% and 96.30% in arousal and valence classification tasks, respectively. In conclusion, multi-aCRNN can better integrate EEG features from different angles and provide better classification results for emotion recognition.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3