Application of Transfer Learning and Feature Fusion Algorithms to Improve the Identification and Prediction Efficiency of Premature Ovarian Failure

Author:

Zhang Yuanyuan1,Hou Jing2,Wang Qiaoyun2,Hou Aiqin3ORCID,Liu Yanni1

Affiliation:

1. Department of Reproductive Medicine Centre, Affiliated Hospital of Yan’an University, Shaanxi 716000, China

2. Department of Ultrasound Medicine, Affiliated Hospital of Yan’an University, Shaanxi 716000, China

3. Department 2 of Obstetrics, Affiliated Hospital of Yan’an University, Shaanxi 716000, China

Abstract

Ultrasound imaging technology has the advantages of noninvasiveness, real-time, low price, and easy operation. It is one of the most used diagnostic tools for early detection and classification of premature ovarian failure. Although the rapid development of computer-aided diagnosis has provided a great help to the ultrasound diagnosis of premature ovarian failure, it still has many limitations and shortcomings, so this paper adopts transfer learning and feature fusion algorithms to improve the identification and prediction efficiency of premature ovarian failure. In this study, the POF group and the control group both adopted a unified scale. From the four aspects of sociological characteristics, past medical history, environmental factors, and living habits, a dedicated person asked and filled out the scale face to face. All patients participating in the experiment underwent ultrasound examinations. In this paper, the bottom-level feature fusion method is used to improve classification performance. The experiment uses 100 epochs. After each epoch training is completed, we used all the data and labels of the target domain to test. All experiments were performed five times, and the result is the average of five experiments. All the results of baseline and direct classification without migration use the average of five experimental results as the result. Migrating the features extracted by the InceptionV3 network has the best performance for predicting premature ovarian failure. Its classification accuracy is as high as 85.13%, and the F1 value is 0.78. The results show that the migration learning and feature fusion algorithms used in this paper can provide reliable predictive analysis and decision support for doctors in the diagnosis of premature ovarian failure.

Funder

Shaanxi Administration of Traditional Chinese Medicine

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3