Charge Coupled Devices as Particle Detectors

Author:

Iordache Dan A.12,Sterian Paul E.12,Tunaru Ionel1

Affiliation:

1. Physics Department, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania

2. Section of Science and Technology of Information, Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania

Abstract

As it is well known, while the most important advantages of the charge coupled devices, as high energy particle detectors are related to their (a) extremely high sensitivity (very important for the underground laboratories, also) and (b) huge number of very small independent components (pixels) of the magnitude order of106, which allow the separate impressions of many different “signatures” of (silicon lattice defects produced by) these particles, their main disadvantages refer to the (a) difficulty to distinguish between the capture traps (of free electrons and holes, resp.) produced by the radiation particles and the numerous types of traps due to the contamination or dopants and (b) huge number of types of lattice defects due to the irradiation. For these reasons, this work achieves a state of art of the (i) main experimental methods and (ii) physical parameters intended to the characterization of the main types of traps embedded in the silicon lattice of CCDs. There were identified also some new physical parameters useful in this aim, as the polarization degree of capture cross-sections and the state character, as well as some new useful notions, as the trans-Fermi level capture states.

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3