Probabilistic Forecasting Method of Metro Station Environment Based on Autoregressive LSTM Network

Author:

Tian Qing1ORCID,Li Bo1ORCID,Qu Hongquan1ORCID,Pang Liping2ORCID,Zhao Weihang1,Han Yue1

Affiliation:

1. School of Information Science and Technology, North China University of Technology, Beijing 100144, China

2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

With the increasing number of metros, the comfort and safety of crew and passengers in metro stations have been paid great attention. The environment forecasting has become very important for decision-making. The outputs of the traditional point prediction methods are some exact values in the future. However, it might be closer to the real conditions that the predicted variables are given a probability range with a different confidence rather than exact values. This paper proposes a probabilistic forecasting method of metro station environment based on autoregressive Long Short Term Memory (LSTM) network. It has a good performance to quantify the uncertainty of environment trend in a metro station. Seven-day field tests were carried out to obtain the measured data of 7 internal environmental parameters in a metro station and 8 external environment parameters. In order to ensure the prediction performance, the random forest algorithm is used to select the input variables for the proposed probabilistic forecasting method. The selected input variables and the previous predicted values are as the input variables to build the probabilistic forecasting model. The proposed method can realize to predict the probabilistic distribution of internal environmental parameters in a metro station. This work may contribute to prevent emergency events and regulate environment control system reasonably.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3