Integrating Independent Component Analysis and Principal Component Analysis with Neural Network to Predict Chinese Stock Market

Author:

Liu Haifan1,Wang Jun1

Affiliation:

1. Institute of Financial Mathematics and Financial Engineering, College of Science, Beijing Jiaotong University, Beijing 100044, China

Abstract

We investigate the statistical behaviors of Chinese stock market fluctuations by independent component analysis. The independent component analysis (ICA) method is integrated into the neural network model. The proposed approach uses ICA method to analyze the input data of neural network and can obtain the latent independent components (ICs). After analyzing and removing the IC that represents noise, the rest of ICs are used as the input of neural network. In order to forect the fluctuations of Chinese stock market, the data of Shanghai Composite Index is selected and analyzed, and we compare the forecasting performance of the proposed model with those of common BP model integrating principal component analysis (PCA) and single BP model. Experimental results show that the proposed model outperforms the other two models no matter in relatively small or relatively large sample, and the performance of BP model integrating PCA is closer to that of the proposed model in relatively large sample. Further, the prediction results on the points where the prices fluctuate violently by the above three models relatively deviate from the corresponding real market data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3