Preprocessing Unevenly Sampled RR Interval Signals to Enhance Estimation of Heart Rate Deceleration and Acceleration Capacities in Discriminating Chronic Heart Failure Patients from Healthy Controls

Author:

Cao Ping12ORCID,Ye Bailu1ORCID,Yang Linghui1ORCID,Lu Fei1ORCID,Fang Luping1ORCID,Cai Guolong3,Su Qun4ORCID,Ning Gangmin5ORCID,Pan Qing1ORCID

Affiliation:

1. College of Information Engineering, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310023, China

2. Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China

3. Department of ICU, Zhejiang Hospital, 12 Lingyin Road, Hangzhou 310013, China

4. Department of ICU, First Affiliated Hospital Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China

5. Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China

Abstract

Objective. The deceleration capacity (DC) and acceleration capacity (AC) of heart rate, which are recently proposed variants to the heart rate variability, are calculated from unevenly sampled RR interval signals using phase-rectified signal averaging. Although uneven sampling of these signals compromises heart rate variability analyses, its effect on DC and AC analyses remains to be addressed. Approach. We assess preprocessing (i.e., interpolation and resampling) of RR interval signals on the diagnostic effect of DC and AC from simulation and clinical data. The simulation analysis synthesizes unevenly sampled RR interval signals with known frequency components to evaluate the preprocessing performance for frequency extraction. The clinical analysis compares the conventional DC and AC calculation with the calculation using preprocessed RR interval signals on 24-hour data acquired from normal subjects and chronic heart failure patients. Main Results. The assessment of frequency components in the RR intervals using wavelet analysis becomes more robust with preprocessing. Moreover, preprocessing improves the diagnostic ability based on DC and AC for chronic heart failure patients, with area under the receiver operating characteristic curve increasing from 0.920 to 0.942 for DC and from 0.818 to 0.923 for AC. Significance. Both the simulation and clinical analyses demonstrate that interpolation and resampling of unevenly sampled RR interval signals improve the performance of DC and AC, enabling the discrimination of CHF patients from healthy controls.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3