Determination of Parameters for an Entropy-Based Atrial Fibrillation Detector

Author:

Zhao Lina,Li Jianqing,Wan Xiangkui,Wei Shoushui,Liu Chengyu

Abstract

Entropy algorithm is an important nonlinear method for cardiovascular disease detection due to its power in analyzing short-term time series. In previous a study, we proposed a new entropy-based atrial fibrillation (AF) detector, i.e., EntropyAF, which showed a high classification accuracy in identifying AF and non-AF rhythms. As a variation of entropy measures, EntropyAF has two parameters that need to be initialized before the calculation: (1) tolerance threshold r and (2) similarity weight n. In this study, a comprehensive analysis for the two parameters determination was presented, aiming to achieve a high detection accuracy for AF events. Data were from the MIT-BIH AF database. RR interval recordings were segmented using a 30-beat time window. The parameters r and n were initialized from a relatively small value, then gradually increased, and finally the best parameter combination was determined using grid searching. AUC (area under curve) values from the receiver operator characteristic curve (ROC) were compared under different parameter combinations of parameters r and n, and the results demonstrated that the selection of these two parameters plays an important role in AF/non-AF classification. Small values of parameters r and n can lead to a better detection accuracy than other selections. The best AUC value for AF detection was 98.15%, and the corresponding parameter combinations for EntropyAF were as follows: r = 0.01, n = 0.0625, 0.125, 0.25, or 0.5; r = 0.05 and n = 0.0625, 0.125, or 0.25; and r = 0.10 and n = 0.0625 or 0.125.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3