Dynamic Analysis of Tapered Thin-Walled Beams Using Spectral Finite Element Method

Author:

Shen Yiping1ORCID,Zhu Zhijun1,Wang Songlai1,Wang Gang1

Affiliation:

1. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China

Abstract

Tapered thin-walled structures have been widely used in wind turbine and rotor blade. In this paper, a spectral finite element model is developed to investigate tapered thin-walled beam structures, in which torsion related warping effect is included. First, a set of fully coupled governing equations are derived using Hamilton’s principle to account for axial, bending, and torsion motion. Then, the differential transform method (DTM) is applied to obtain the semianalytical solutions in order to formulate the spectral finite element. Finally, numerical simulations are conducted for tapered thin-walled wind turbine rotor blades and validated by the ANSYS. Modal frequency results agree well with the ANSYS predictions, in which approximate 30,000 shell elements were used. In the SFEM, one single spectral finite element is needed to perform such calculations because the interpolation functions are deduced from the exact semianalytical solutions. Coupled axial-bending-torsion mode shapes are obtained as well. In summary, the proposed spectral finite element model is able to accurately and efficiently to perform the modal analysis for tapered thin-walled rotor blades. These modal frequency and mode shape results are important to carry out design and performance evaluation of the tapered thin-walled structures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3