Abstract
Condition monitoring is used to assess the reliability and equipment efficiency of wind turbines. Feature extraction is an essential preprocessing step to achieve a high level of performance in condition monitoring. However, the fluctuating conditions of wind turbines usually cause sudden variations in the monitored features, which may lead to an inaccurate prediction and maintenance schedule. In this scenario, this article proposed a novel methodology to detect the multiple levels of faults of rolling bearings in variable operating conditions. First, signal decomposition was carried out by variational mode decomposition (VMD). Second, the statistical features were calculated and extracted in the time domain. Meanwhile, a permutation entropy analysis was conducted to estimate the complexity of the vibrational signal in the time series. Next, feature selection techniques were applied to achieve improved identification accuracy and reduce the computational burden. Finally, the ranked feature vectors were fed into machine learning algorithms for the classification of the bearing defect status. In particular, the proposed method was performed over a wide range of working regions to simulate the operational conditions of wind turbines. Comprehensive experimental investigations were employed to evaluate the performance and effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
Ministry of Science and Technology of the People's Republic of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献