An Improved Quantum-Behaved Particle Swarm Optimization Algorithm Combined with Reinforcement Learning for AUV Path Planning

Author:

Zhang HanBin12ORCID,Shi XianPeng1ORCID

Affiliation:

1. National Deep Sea Center, Qingdao 266237, China

2. School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266100, China

Abstract

In order to solve the problem of fast path planning and effective obstacle avoidance for autonomous underwater vehicles (AUVs) in two-dimensional underwater environment, a path planning algorithm based on deep Q-network and Quantum particle swarm optimization (DQN-QPSO) was proposed. Five actions are defined first: normal, exploration, particle explode, random mutation, and fine-tuning operation. After that, the five actions are selected by DQN decision thinking, and the position information of particles is dynamically updated in each iteration according to the selected actions. Finally, considering the complexity of underwater environment, the fitness function is designed, and the route length, deflection angle, and the influence of ocean current are considered comprehensively, so that the algorithm can find the solution path with the shortest energy consumption in underwater environment. Experimental results show that DQN-QPSO algorithm is an effective algorithm, and its performance is better than traditional methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3