Affiliation:
1. National Deep Sea Center, Qingdao 266237, China
2. School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266100, China
Abstract
In order to solve the problem of fast path planning and effective obstacle avoidance for autonomous underwater vehicles (AUVs) in two-dimensional underwater environment, a path planning algorithm based on deep Q-network and Quantum particle swarm optimization (DQN-QPSO) was proposed. Five actions are defined first: normal, exploration, particle explode, random mutation, and fine-tuning operation. After that, the five actions are selected by DQN decision thinking, and the position information of particles is dynamically updated in each iteration according to the selected actions. Finally, considering the complexity of underwater environment, the fitness function is designed, and the route length, deflection angle, and the influence of ocean current are considered comprehensively, so that the algorithm can find the solution path with the shortest energy consumption in underwater environment. Experimental results show that DQN-QPSO algorithm is an effective algorithm, and its performance is better than traditional methods.
Funder
National Natural Science Foundation of China
Subject
General Computer Science,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献