An Efficient Local Repair-Based Multi-Constrained Routing for Congestion Control in Wireless Mesh Networks

Author:

Shin Byoungheon1ORCID,Lee Dongman1

Affiliation:

1. School of Computing, KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea

Abstract

Multi-constrained routing is a key driver to support quality-of-service (QoS) for real-time multimedia applications in wireless mesh networks (WMNs). Due to the difficulty of applying strict admission control into a public WMN, it is inevitable to accommodate multiple application flows with different QoS requirements exceeding the capacity of a certain link shared by multiple flows. However, existing multi-constrained routing protocols under such an environment find the QoS degradation based on end-to-end path quality probing and trigger flooding-based route discovery from a scratch for resolving the QoS degradation, which incurs a longer recovery time and much routing overhead. In this paper, we propose a novel multi-constrained routing protocol for WMNs that finds problematic links that may affect QoS degradation to end-to-end paths and replaces them with a detour path using a local repair principle. We model congestion threshold estimation for finding problematic links and design algorithms for quickly finding detour paths and selecting an optimal path by minimizing the negative effect on existing flows nearby the detour path. Simulation results show that the proposed routing protocol achieves up to 19.6% more goodput of live video streaming applications with up to 33% reduced routing overhead compared with an existing work.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3