Deep Learning Enhanced Solar Energy Forecasting with AI-Driven IoT

Author:

Zhou Hangxia1ORCID,Liu Qian1ORCID,Yan Ke2ORCID,Du Yang3ORCID

Affiliation:

1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou, 310018, China

2. National University of Singapore, 4 Architecture Drive, 117566, Singapore

3. College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia

Abstract

Short-term photovoltaic (PV) energy generation forecasting models are important, stabilizing the power integration between the PV and the smart grid for artificial intelligence- (AI-) driven internet of things (IoT) modeling of smart cities. With the recent development of AI and IoT technologies, it is possible for deep learning techniques to achieve more accurate energy generation forecasting results for the PV systems. Difficulties exist for the traditional PV energy generation forecasting method considering external feature variables, such as the seasonality. In this study, we propose a hybrid deep learning method that combines the clustering techniques, convolutional neural network (CNN), long short-term memory (LSTM), and attention mechanism with the wireless sensor network to overcome the existing difficulties of the PV energy generation forecasting problem. The overall proposed method is divided into three stages, namely, clustering, training, and forecasting. In the clustering stage, correlation analysis and self-organizing mapping are employed to select the highest relevant factors in historical data. In the training stage, a convolutional neural network, long short-term memory neural network, and attention mechanism are combined to construct a hybrid deep learning model to perform the forecasting task. In the testing stage, the most appropriate training model is selected based on the month of the testing data. The experimental results showed significantly higher prediction accuracy rates for all time intervals compared to existing methods, including traditional artificial neural networks, long short-term memory neural networks, and an algorithm combining long short-term memory neural network and attention mechanism.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3