Numerical Estimation of Material Properties in the Electrohydraulic Forming Process Based on a Kriging Surrogate Model

Author:

Woo Mina1,Lee Kyunghoon1,Song Woojin2,Kang Beomsoo1,Kim Jeong1ORCID

Affiliation:

1. Department of Aerospace Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

2. Department of Green Transportation System, Graduate School of Convergence Science, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

Abstract

High-speed forming processes, such as electrohydraulic forming, have recently attracted attention with the development of forming technology. However, because the high-speed operation (above 100 m/s) raises safety concerns, most experiments are conducted in a closed die, which hides the forming process. Therefore, the experimental process can only be observed in a numerical simulation with accurate material properties. The conventional quasistatic material properties are improper for high-speed forming simulations with high strain rates (>102 s−1). In this study, the material properties of Al 6061-T6, which reflect the deformation behavior in the high-strain-rate region, were investigated in a numerical approach based on a reduced order model and a surrogate model in which the numerical results resemble the experimental results. The strain rate effect on the material was determined by the Cowper–Symonds constitutive equation, and two strain rate parameters were predicted. The surrogate model takes two material parameters as inputs and outputs a weighting coefficient calculated by the reduced order model. The surrogate model is based on the Kriging method to reduce the simulation cost. Next, the optimal material parameters that minimize the error between the surrogate model and the experiments are estimated by nonlinear least-squares optimization using a genetic algorithm and the constructed surrogate model. The predicted optimal parameters were verified by comparing the results of the experiment, numerical simulation, and surrogate model.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3