Inverse Identification of a Constitutive Model for High-Speed Forming Simulation: An Application to Electromagnetic Metal Forming

Author:

Kang Dayoung,Noh Hak-Gon,Kim JeongORCID,Lee KyunghoonORCID

Abstract

Forming simulation requires a constitutive model whose parameters are typically determined with tensile tests assumed static. However, this conventional approach is impractical for high-speed forming simulation characterized by high strain rates inducing transient effects. To identify constitutive parameters in relation to high-speed forming simulation, we formulated the problem of constitutive modeling as inverse parameter estimation addressed by regularized nonlinear least squares. Regarding the proposed inverse constitutive modeling, we adopted the L-curve method for proper regularization and model order reduction for rapid simulation. For demonstration, we corroborated the proposed strategy by identifying the modified Johnson–Cook model in the context of a free bulge test with electromagnetic metal forming simulation. The L-curve method allowed us to systematically choose a regularization parameter, and model order reduction brought enormous computational savings. After identifying constitutive parameters, we successfully verified and validated the reduced and original simulation models, respectively, with a manufactured workpiece. In addition, we validated the numerically identified constitutive model with a dynamic material test using a split Hopkinson pressure bar. Overall, we showed that inverse constitutive modeling for high-speed forming simulation can be effectively tackled by regularized nonlinear least squares with the help of an L-curve and a reduced-order model.

Funder

Korea government

Agency for Defense Development

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Study on Dynamic Tensile Test of Auto-Body Steel Sheet at the Intermediate Strain Rate for Material Constitutive Equations;Lim;Ph.D. Thesis,2005

2. Determination of the Material Characteristics by Means of a High Speed Tensile Test - Experiments and Simulations

3. A computational determination of the Cowper–Symonds parameters from a single Taylor test

4. Classic split-Hopkinson pressure bar technique;Gray;ASM Int.,1999

5. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5−104s−1

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3