A Novel Approach to Improve the Barrier Properties of PET/Clay Nanocomposites

Author:

Majdzadeh-Ardakani Kazem1ORCID,Zekriardehani Shahab1ORCID,Coleman Maria R.1,Jabarin Saleh A.1ORCID

Affiliation:

1. Polymer Institute and Department of Chemical and Environmental Engineering, University of Toledo, Toledo, OH 43606-3390, USA

Abstract

An investigation of oleic acid-modified clay versus plain clay with regard to the physical and barrier properties of PET/clay nanocomposites was performed. Montmorillonite (MMT) and Cloisite 30B nanoclays were modified by long-chain oleic acid and identified as ol-MMT and ol-30B, respectively. Fourier Transformed Infrared Spectroscopy and X-ray diffraction (XRD) results revealed that the fatty acid was associated with the clay surface and that the gallery spacing of the layered silicates was expanded. In the case of ol-MMT, a disordered structure of layered silicates was achieved. TGA results indicated that ol-MMT showed thermal stability and could survive PET processing temperature. The degradation of ol-30B, however, increased after modification because of the presence of oleic acid. PET/clay nanocomposites were prepared with modified ol-MMT and modified ol-30B by using a twin screw extruder. XRD indicated that there was a significant improvement on the dispersion of nanoclays modified with long-chain oleic acid into the PET matrix, and an exfoliated structure was achieved. DSC data also revealed that crystallization behaviors of nanocomposites prepared with oleic acid-modified clays are similar to that of extruded PET. Significant improvements in the mechanical and barrier properties of stretched PET/clay nanocomposites were also achieved.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3