Mechanical Transformation of Compounds Leading to Physical, Chemical, and Biological Changes in Pharmaceutical Substances

Author:

Syroeshkin A. V.1,Uspenskaya E. V.1,Pleteneva T. V.1,Morozova M. A.1,Zlatskiy I. A.12ORCID,Koldina A. M.1,Nikiforova M. V.1

Affiliation:

1. Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia

2. Dumanskii Institute of Colloid and Water Chemistry National Academy of Sciences of Ukraine, Kiev, Ukraine

Abstract

This study demonstrates the link between the modification of the solid-phase pharmaceutical substances mechanical structure and their activity in waters with different molar ratio «deuterium-protium». Mechanochemical transformation of the powders of lactose monohydrate and sodium chloride as models of nutrients and components of dosage forms was investigated by the complex of physicochemical and biological methods. The solubility and kinetic activity of substances dispersed in various ways showed a positive correlation with the solvent isotope profile. Substances dissolved in heavy water were more active than solutes in natural water. Differential IR spectroscopy confirmed the modification of substituents in the sample of lactose monohydrate, demonstrating physicochemical changes during mechanical intervention. The biological activity of the compounds was determined by the method of Spirotox. The activation energy was determined by Arrhenius. Compared with the native compound, dispersed lactose monohydrate showed lower activation energy and, therefore, greater efficiency. In conclusion, proposed data confirm the statement that mechanical changes in compounds can lead to physicochemical changes that affect chemical and biological profiles.

Funder

RUDN University

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3