Influence of Mechanical Loading on the Process of Tribochemical Action on Physicochemical and Biopharmaceutical Properties of Substances, Using Lacosamide as an Example: From Micronisation to Mechanical Activation

Author:

Uspenskaya Elena V.1ORCID,Kuzmina Ekaterina1,Quynh Hoang Thi Ngoc1ORCID,Komkova Maria A.1,Kazimova Ilaha V.1,Timofeev Aleksey A.2

Affiliation:

1. Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia

2. Scientific and Educational Resource Centre “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia

Abstract

Many physical and chemical properties of solids, such as strength, plasticity, dispersibility, solubility and dissolution are determined by defects in the crystal structure. The aim of this work is to study in situ dynamic, dispersion, chemical, biological and surface properties of lacosamide powder after a complete cycle of mechanical loading by laser scattering, electron microscopy, FR-IR and biopharmaceutical approaches. The SLS method demonstrated the spontaneous tendency toward surface-energy reduction due to aggregation during micronisation. DLS analysis showed conformational changes of colloidal particles as supramolecular complexes depending on the loading time on the solid. SEM analysis demonstrated the conglomeration of needle-like lacosamide particles after 60 min of milling time and the transition to a glassy state with isotropy of properties by the end of the tribochemistry cycle. The following dynamic properties of lacosamide were established: elastic and plastic deformation boundaries, region of inhomogeneous deformation and fracture point. The ratio of dissolution-rate constants in water of samples before and after a full cycle of loading was 2.4. The lacosamide sample, which underwent a full cycle of mechanical loading, showed improved kinetics of API release via analysis of dissolution profiles in 0.1 M HCl medium. The observed activation-energy values of the cell-death biosensor process in aqueous solutions of the lacosamide samples before and after the complete tribochemical cycle were 207 kJmol−1 and 145 kJmol−1, respectively. The equilibrium time of dissolution and activation of cell-biosensor death corresponding to 20 min of mechanical loading on a solid was determined. The current study may have important practical significance for the transformation and management of the properties of drug substances in solid form and in solutions and for increasing the strength of drug matrices by pre-strain hardening via structural rearrangements during mechanical loading.

Funder

RUDN University Scientific Projects Grant System

Publisher

MDPI AG

Reference64 articles.

1. Reaktionsursachen in der Tribochemie;Boldyrev;Z. Phys. Chem.,1979

2. Role of Mixing and Milling in Mechanochemical Synthesis;Lapshin;Russ. J. Inorg. Chem.,2021

3. Mechano-chemical Reaction;McNaught;IUPAC Compend. Chem. Terminol.,2008

4. Heinicke, G. (1985). Tribochemistry, Carl Hanser Verlag.

5. How sonochemistry contributes to green chemistry?;Chatel;Ultrason. Sonochem,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3