A Machine-Learning-Based System for Prediction of Cardiovascular and Chronic Respiratory Diseases

Author:

Shah Wajid1,Aleem Muhammad2ORCID,Iqbal Muhammad Azhar3ORCID,Islam Muhammad Arshad2ORCID,Ahmed Usman4ORCID,Srivastava Gautam56ORCID,Lin Jerry Chun-Wei4ORCID

Affiliation:

1. Capital University of Science and Technology, Islamabad 44000, Pakistan

2. National University of Computer and Emerging Sciences (NUCES), Islamabad 44000, Pakistan

3. School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China

4. Department of Computer Science,Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen 5063, Norway

5. Department of Mathematics and Computer Science, Brandon University, Brandon, Canada

6. Research Centre for Interneural Computing, China Medical University, Taichung 40402, Taiwan

Abstract

Cardiovascular and chronic respiratory diseases are global threats to public health and cause approximately 19 million deaths worldwide annually. This high mortality rate can be reduced with the use of technological advancements in medical science that can facilitate continuous monitoring of physiological parameters—blood pressure, cholesterol levels, blood glucose, etc. The futuristic values of these critical physiological or vital sign parameters not only enable in-time assistance from medical experts and caregivers but also help patients manage their health status by receiving relevant regular alerts/advice from healthcare practitioners. In this study, we propose a machine-learning-based prediction and classification system to determine futuristic values of related vital signs for both cardiovascular and chronic respiratory diseases. Based on the prediction of futuristic values, the proposed system can classify patients’ health status to alarm the caregivers and medical experts. In this machine-learning-based prediction and classification model, we have used a real vital sign dataset. To predict the next 1–3 minutes of vital sign values, several regression techniques (i.e., linear regression and polynomial regression of degrees 2, 3, and 4) have been tested. For caregivers, a 60-second prediction and to facilitate emergency medical assistance, a 3-minute prediction of vital signs is used. Based on the predicted vital signs values, the patient’s overall health is assessed using three machine learning classifiers, i.e., Support Vector Machine (SVM), Naive Bayes, and Decision Tree. Our results show that the Decision Tree can correctly classify a patient’s health status based on abnormal vital sign values and is helpful in timely medical care to the patients.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3