Edge AI for Early Detection of Chronic Diseases and the Spread of Infectious Diseases: Opportunities, Challenges, and Future Directions

Author:

Badidi Elarbi1ORCID

Affiliation:

1. Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates

Abstract

Edge AI, an interdisciplinary technology that enables distributed intelligence with edge devices, is quickly becoming a critical component in early health prediction. Edge AI encompasses data analytics and artificial intelligence (AI) using machine learning, deep learning, and federated learning models deployed and executed at the edge of the network, far from centralized data centers. AI enables the careful analysis of large datasets derived from multiple sources, including electronic health records, wearable devices, and demographic information, making it possible to identify intricate patterns and predict a person’s future health. Federated learning, a novel approach in AI, further enhances this prediction by enabling collaborative training of AI models on distributed edge devices while maintaining privacy. Using edge computing, data can be processed and analyzed locally, reducing latency and enabling instant decision making. This article reviews the role of Edge AI in early health prediction and highlights its potential to improve public health. Topics covered include the use of AI algorithms for early detection of chronic diseases such as diabetes and cancer and the use of edge computing in wearable devices to detect the spread of infectious diseases. In addition to discussing the challenges and limitations of Edge AI in early health prediction, this article emphasizes future research directions to address these concerns and the integration with existing healthcare systems and explore the full potential of these technologies in improving public health.

Funder

United Arab Emirates (UAE) University

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference103 articles.

1. Artificial intelligence in healthcare;Yu;Nat. Biomed. Eng.,2018

2. Overview of artificial intelligence in medicine;Malik;J. Family Med. Prim. Care,2019

3. Bohr, A., and Memarzadeh, K. (2020). Artificial Intelligence in Healthcare, Academic Press.

4. Artificial Intelligence in Healthcare: Review and Prediction Case Studies;Rong;Proc. Est. Acad. Sci. Eng.,2020

5. Edge Computing: Vision and Challenges;Shi;IEEE Internet Things J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3