Prediction-Based Maintenance of Existing Bridges Using Neural Network and Sensitivity Analysis

Author:

Miao Pengyong1ORCID

Affiliation:

1. Graduate School of Engineering, Hokkaido University, Sapporo, Japan

Abstract

Bridge deterioration is affected by various factors. However, neither the relationships between these factors and deterioration are explicitly determined, nor the relative effect of each factor on deterioration is well understood. This study proposed a methodology to resolve these issues by integrating an artificial neural network (ANN) and sensitivity analysis method. The ANN was used to predict deterioration, and the sensitivity analysis method was applied to evaluate the influence of each factor on deterioration. Testing the methodology with 3,368 bridge inspection data pieces indicates that (1) the developed ANN obtained an accuracy of about 65%; and (2) seven factors were identified affecting deterioration. The established ANN model has equivalent performance for three deterioration grades and four types of bridges. Two sensitivity analysis (the Shapley value and the Sobol indices) methods were compared, and they identified the same five most important factors. Consequently, the methodology can effectively avoid the uncertainty of factors on deterioration by providing a relative importance list of factors. The methodology’s predictive ability and factor importance identification ability make it suitable for decision-makers to understand the deterioration situations and to schedule a further inspection and corresponding maintenance strategies.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling bridge deterioration using long short-term memory neural networks: a deep learning-based approach;Smart and Sustainable Built Environment;2024-07-30

2. AI Approaches for Predictive Maintenance in Road Bridge Infrastructure;2024 International Conference on Smart Applications, Communications and Networking (SmartNets);2024-05-28

3. Vibration-based SHM of Dębica railway steel bridge with optimized ANN and ANFIS;Journal of Constructional Steel Research;2024-04

4. Interpretable machine learning model for predicting freeze-thaw damage of dune sand and fiber reinforced concrete;Case Studies in Construction Materials;2023-12

5. Bridge Performance Prediction Based on a Novel SHM-Data Assimilation Approach considering Cyclicity;Structural Control and Health Monitoring;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3