Modelling bridge deterioration using long short-term memory neural networks: a deep learning-based approach

Author:

Abu Dabous SalehORCID,Ibrahim FakhariyaORCID,Alzghoul AhmadORCID

Abstract

PurposeBridge deterioration is a critical risk to public safety, which mandates regular inspection and maintenance to ensure sustainable transport services. Many models have been developed to aid in understanding deterioration patterns and in planning maintenance actions and fund allocation. This study aims at developing a deep-learning model to predict the deterioration of concrete bridge decks.Design/methodology/approachThree long short-term memory (LSTM) models are formulated to predict the condition rating of bridge decks, namely vanilla LSTM (vLSTM), stacked LSTM (sLSTM), and convolutional neural networks combined with LSTM (CNN-LSTM). The models are developed by utilising the National Bridge Inventory (NBI) datasets spanning from 2001 to 2019 to predict the deck condition ratings in 2021.FindingsResults reveal that all three models have accuracies of 90% and above, with mean squared errors (MSE) between 0.81 and 0.103. Moreover, CNN-LSTM has the best performance, achieving an accuracy of 93%, coefficient of correlation of 0.91, R2 value of 0.83, and MSE of 0.081.Research limitations/implicationsThe study used the NBI bridge inventory databases to develop the bridge deterioration models. Future studies can extend the model to other bridge databases and other applications in the construction industry.Originality/valueThis study provides a detailed and extensive data cleansing process to address the shortcomings in the NBI database. This research presents a framework for implementing artificial intelligence-based models to enhance maintenance planning and a guideline for utilising the NBI or other bridge inventory databases to develop accurate bridge deterioration models. Future studies can extend the model to other bridge databases and other applications in the construction industry.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3