Variation in Surface Solar Radiation and the Influencing Factors in Xinjiang, Northwestern China

Author:

Jin Lili12ORCID,Li Zhenjie345,He Qing2ORCID,Abbas Alim2

Affiliation:

1. Department of Atmospheric Sciences, Yunnan University, Kunming 650500, China

2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Lincang Meteorological Bureau, Lincang 677099, China

Abstract

The variation of solar radiation has a profound effect on the surface energy balance and hydrological cycle. Although the relationship between solar radiation variation and its influencing factors has been extensively studied, they are seldom used in Xinjiang, the largest province in China. In this study, we investigated the spatial distribution and temporal variation in global radiation (Eg), water vapor content (WVC), aerosol optical depth (AOD), total cloud cover (TCC), and low-level cloud cover (LCC) in Xinjiang, northwestern China, between 1961 and 2015. The annual average Eg reported at all stations was 5126.3–6252.8 MJ·m−2 with a mean of 5672 MJ·m−2. The highest annual mean Eg of 6252.8 MJ·m−2 occurred in Hami, eastern Xinjiang, whereas the lowest annual mean Eg of 5126.3 MJ·m−2 occurred in Urumqi, northern Xinjiang. The annual Eg variation was mainly affected by WVC, AOD, TCC, and LCC. Decreases in annual, spring, summer, autumn, and winter Eg trends were recorded in Xinjiang at rates of −33.88 × 10−2, −1.92 × 10−2, −1.89 × 10−2, −3.47 × 10−2, and −3.56 × 10−2 MJ·m−2·decade−1, respectively, with decreasing ratios of 9.43%, 5.85%, 0.14%, 8%, and 20.55%, respectively. Increasing trends in annual WVC, AOD, TCC, and LCC were noted in Xinjiang at rates of 7.12 × 10−5 mm·decade−1, 2.74 × 10−6 decade−1, 8.77 × 10−5 % decade−1, and 5.73 × 10−5% decade−1, respectively. In addition, increasing trends in the annual Eg at Yining and Yanqi stations were observed. The Eg spatial distribution was complex in Xinjiang at the stations observed in this study, which were divided into six groups. Eg at group 1 showed an increasing trend associated with decreases in the WVC and TCC, whereas decreases in Eg were observed at groups 2–6, which could have been influenced by increases in AOD, TCC, and LCC.

Funder

Third Xinjiang Scientific Expedition and Research Program

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3