Are Regions Conducive to Photovoltaic Power Generation Demonstrating Significant Potential for Harnessing Solar Energy via Photovoltaic Systems?

Author:

Bao Jiayu123,Li Xianglong13,Yu Tao2,Jiang Liangliang4,Zhang Jialin1,Song Fengjiao2,Xu Wenqiang2ORCID

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

3. Advanced Blasting Technology Engineering Research Center of Yunnan Provincial Department of Education, Kunming 650093, China

4. School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China

Abstract

To achieve the goals of carbon peak and carbon neutrality, Xinjiang, as an autonomous region in China with large energy reserves, should adjust its energy development and vigorously develop new energy sources, such as photovoltaic (PV) power. This study utilized data spatiotemporal variation in solar radiation from 1984 to 2016 to verify that Xinjiang is suitable for the development of PV power generation. Then, the averages of the solar radiation, sunshine duration, and other data in the period after 2000 were used to assess the suitability of Xinjiang, based on spatial principal component analysis (SPCA). Finally, the theoretical power generation potential, fossil fuel reduction, and CO2 emissions reduction were estimated. The results are as follows: (1) In terms of temporal variation, the solar radiation in Xinjiang decreased (1984–2002), increased (2002–2009), and decreased again (2009–2016), but the fluctuations were not statistically significant. In terms of spatial distribution, the Kunlun Mountains in southern Xinjiang had the highest solar radiation during the span of the study period. Hami and Turpan, in eastern Xinjiang, had sufficiently high and stable solar radiation. (2) The area in Xinjiang classed as highly suitable for solar PV power generation is about 87,837 km2, which is mainly concentrated in eastern Xinjiang. (3) In the situation where the construction of PV power plants in Xinjiang is fully developed, the theoretical potential of annual solar PV power generation in Xinjiang is approximately 8.57 × 106 GWh. This is equivalent to 2.59 × 109 tce of coal. Furthermore, 6.58 × 109 t of CO2 emissions can be reduced. PV power generation potential is approximately 27 times the energy consumption of Xinjiang in 2020. Through the suitability assessment and calculations, we found that Xinjiang has significant potential for PV systems.

Funder

Tianshan Talent Training Program of the Xinjiang Uygur Autonomous Region

egional Collaborative Innovation Project of Xinjiang

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3