Biomechanical Effects of Lateral Bending Position on Performing Cervical Spinal Manipulation for Cervical Disc Herniation: A Three-Dimensional Finite Element Analysis

Author:

Huang Xuecheng12,Ye Linqiang2,Wu Zixian12,Liang Lichang3,Wang Qianli2,Yu Weibo4,Liang De5ORCID,Jiang Xiaobing2ORCID

Affiliation:

1. First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China

2. Department of Spinal Surgery, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China

3. Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China

4. Department of Orthopaedic and Traumatology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China

5. Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China

Abstract

Background. Most studies report that the common position of cervical spinal manipulation (CSM) for treating symptomatic cervical disc herniation (CDH) is lateral bending to the herniated side. However, the rationality of lateral bending position on performing CSM for CDH is still unclear. Objective. The purpose of this study is to investigate the biomechanical effects of lateral bending position on performing CSM for CDH. Methods. A finite element (FE) model of CDH (herniated on the left side) was generated in C5-6 segment based on the normal FE model. The FE model performed CSM in left lateral bending position, neutral position, and right lateral bending position, respectively. Cervical disc displacement, annulus fiber stress, and facet joint stress were observed during the simulation of CSM. Results. The cervical disc displacement on herniated side moved forward during CSM, and the maximum forward displacements were 0.23, 0.36, and 0.45 mm in left lateral bending position, neutral position, and right lateral bending position, respectively. As the same trend of cervical disc displacement, the annulus fiber stresses on herniated side from small to large were 7.40, 16.39, and 22.75 MPa in left lateral bending position, neutral position, and right lateral bending position, respectively. However, the maximum facet stresses at left superior cartilage of C6 in left lateral bending position, neutral position, and right lateral bending position were 6.88, 3.60, and 0.12 MPa, respectively. Conclusion. Compared with neutral position and right lateral bending position, though the forward displacement of cervical disc on herniated side was smaller in left lateral bending position, the annulus fiber stress on herniated side was declined by sharing load on the left facet joint. The results suggested that lateral bending to the herniated side on performing CSM tends to protect the cervical disc on herniated side. Future clinical studies are needed to verify that.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3