Hyaluronan Regulates Cell Behavior: A Potential Niche Matrix for Stem Cells

Author:

Solis Mairim Alexandra12,Chen Ying-Hui12,Wong Tzyy Yue12,Bittencourt Vanessa Zaiatz12,Lin Yen-Cheng12,Huang Lynn L. H.1234

Affiliation:

1. Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan

2. Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan

3. Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan

4. Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan

Abstract

Hyaluronan is a linear glycosaminoglycan that has received special attention in the last few decades due to its extraordinary physiological functions. This highly viscous polysaccharide is not only a lubricator, but also a significant regulator of cellular behaviors during embryogenesis, morphogenesis, migration, proliferation, and drug resistance in many cell types, including stem cells. Most hyaluronan functions require binding to its cellular receptors CD44, LYVE-1, HARE, layilin, and RHAMM. After binding, proteins are recruited and messages are sent to alter cellular activities. When low concentrations of hyaluronan are applied to stem cells, the proliferative activity is enhanced. However, at high concentrations, stem cells acquire a dormant state and induce a multidrug resistance phenotype. Due to the influence of hyaluronan on cells and tissue morphogenesis, with regards to cardiogenesis, chondrogenesis, osteogenesis, and neurogenesis, it is now been utilized as a biomaterial for tissue regeneration. This paper summarizes the most important and recent findings regarding the regulation of hyaluronan in cells.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3