Applying a Mesoscale Atmospheric Model to Svalbard Glaciers

Author:

Claremar Björn1ORCID,Obleitner Friedrich2,Reijmer Carleen3,Pohjola Veijo1,Waxegård Anna1,Karner Florian2,Rutgersson Anna1ORCID

Affiliation:

1. Department of Earth Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden

2. Institute of Meteorology and Geophysics, Innsbruck University, 6020 Innsbruck, Austria

3. Institute for Marine and Atmospheric Research, Utrecht University, 3508 TC Utrecht, The Netherlands

Abstract

The mesoscale atmospheric model WRF is used over three Svalbard glaciers. The simulations are done with a setup of the model corresponding to the state-of-the-art model for polar conditions, Polar WRF, and it was validated using surface observations. The ERA-Interim reanalysis was used for boundary forcing and the model was used with three nested smaller domains, 24 and 8 km, and 2.7 km resolution. The model was used for a two-year period as well as for a more detailed study using 3 summer and winter months. In addition sensitivity tests using finer horizontal and vertical resolution in the boundary layer and using different physics schemes were performed. Temperature and incoming short- and long-wave radiation were skillfully simulated, with lower agreement between measured and modelled wind speed. Increased vertical resolution improved the frequency distributions of the wind speed and the temperature. The choice of different physics schemes only slightly changed the model results. The polar-optimized microphysics scheme outperformed a slightly simpler microphysics scheme, but the two alternative and more sophisticated PBL schemes improved the model score. A PBL scheme developed for very stable stratifications (QNSE) proved to be better in the winter.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3