GPX8 as a Novel Prognostic Factor and Potential Therapeutic Target in Primary Glioma

Author:

Yang Zhao-shou1ORCID,Yang Qin1,Sun Xiao-xiao1,Xiong Kui1,Zhu Xiao-ting1,Wang Yi-chen1,Ren Qian-yao2,Wu Guo-hui1,Wang Shi-min2,Cao Xu-qin3,Yang Xiao-rong1ORCID,Jiang Wen-gong1ORCID

Affiliation:

1. The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China

2. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China

3. Department of Ultrasound and Electrocardiogram, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou 510080, China

Abstract

One of the most prevalent malignant primary brain tumors is primary glioma. Although glutathione peroxidase 8 (GPX8) is intimately associated with carcinogenesis, its function in primary gliomas has not yet been thoroughly understood. Here, we leveraged Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) database to investigate the association between GPX8 and overall survival (OS) of patients with primary gliomas, and our results showed that GPX8 expression was negatively correlated with OS. Moreover, the expression of GPX8 is significantly lower in normal tissue when compared to glioma tissue. According to results of univariate and multivariate analysis from CGGA using R studio, GPX8 is a valuable primary glioma prognostic indicator. Interestingly, high GPX8 expression is correlated positively with the hedgehog and kras signaling pathways and negatively with G2 checkpoint, apoptosis, reactive oxygen species (ROS) pathway, and interferon gamma pathway, which could be beneficial for the proliferation of glioma cells. Furthermore, GPX8 knockdown caused G1 cell cycle arrest, increased cell death, and reduced colony formation in U87MG and U118MG cells. In conclusion, GPX8 is a promising therapeutic target and meaningful prognostic biomarker of primary glioma.

Funder

Guangzhou Science and Technology Program key projects

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3