An Improved Bearing Fault Diagnosis Model of Variational Mode Decomposition Based on Linked Extension Neural Network

Author:

Wang Tichun1ORCID,Wang Jiayun1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

In bearing fault diagnosis, due to the insufficient obtained supervised data and the inevitable noise contained in the vibration signals, the problem of clustering bearing fault diagnosis with imbalanced data containing noise is caused. Thanks to the ability to quickly and fully learn boundary information in small samples, the extension neural network-type 2 algorithm (ENN-2) has the potential in imbalanced data clustering and has been gradually applied in fault diagnosis. Therefore, in order to improve the unstable clustering performance of ENN-2 caused by its heavy dependence on input order of samples, a novel algorithm called linked extension neural network (LENN) is developed by redesigning the correlation function and its iterative method, which greatly reduces the clustering iteration epochs of the algorithm. In addition, an evaluation index of clustering quality for this novel algorithm, extension density, is also proposed. After that, a bearing fault diagnosis model of variational mode decomposition (VMD) based denoising and LENN is proposed. Firstly, VMD is used to get intrinsic mode functions (IMFs), and the correlation coefficients of IMFs are calculated for signal denoising. Secondly, the features are extracted from denoised signals and selected by PCA algorithm, and the fault diagnosis is finally completed by LENN. Compared with ENN-2, K-means, FCM, and DBSCAN based models, the proposed model identifies the faults with different severities more accurately and achieves superior diagnostic ability on different imbalance degrees of datasets, which can further lay a foundation for clustering fault diagnosis based on vibration signals.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3