A Node Selection Paradigm for Crowdsourcing Service Based on Region Feature in Crowd Sensing

Author:

Peng Zhenlong1234,Gui Xiaolin124ORCID,An Jian2ORCID,Liao Dong14,Cai Ningchao45,Gui Ruowei14

Affiliation:

1. School of Electronics and Information Engineering, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China

2. Xi’an Jiaotong University Shenzhen Research School, High-Tech Zone, Shenzhen 518057, China

3. Chen Shouren Business School, Quanzhou Normal University, Donghai Street, Quanzhou 362000, China

4. Shaanxi Province Key Laboratory of Computer Network, No. 28, Xianning West Road, Xi’an 710049, China

5. The Fu Foundation School of Engineering and Applied Science, Columbia University, Manhattan, NY, USA

Abstract

Crowd sensing is a human-centered sensing model. Through the cooperation of multiple nodes, an entire sensing task is completed. To improve the efficiency of sensing missions, a cost-effective set of service nodes, which is easy to fit in performing different tasks, is needed. In this paper, we propose a low-cost service node selection method based on region features, which builds on the relationship between task requirements and geographical locations. The method uses Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to cluster service nodes and calculate the center point of each cluster. The area then is divided into regions according to rules of Voronoi diagrams. Local feature vectors are constructed according to the historical records in each divided region. When a particular sensing task arrives, Analytic Hierarchy Process (AHP) is used to match the feature vector of each region to mission requirements to get a certain number of service nodes satisfying the characteristics. To get a lower cost output, a revised Greedy Algorithm is designed to filter the exported service nodes to get the required low-cost service nodes. Experimental results suggest that the proposed method shows promise in improving service node selection accuracy and the timeliness of finishing tasks.

Funder

Science and Technology Program of Shenzhen

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3