Affiliation:
1. Department of Mathematics, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
2. Department of Mathematics, University of Poonch Rawalakot, Rawalakot, Pakistan
Abstract
In this paper, we study the dynamic of the predator–prey model based on mutual interference and its effects on searching efficiency. The parametric conditions, existence, and stability for trivial and boundary equilibrium points are studied. Also, it has shown that by applying the center manifold theorem and bifurcation theory, system undergoes Neimark–Sacker bifurcation across the neighborhood of a positive fixed point. Moreover, due to the bifurcation and chaos which objectively exist in a system, three chaos control strategies are designed and used. Moreover, to validate our theoretical and analytical discussions, numerical simulations are applied to show complex and chaotic behavior. Finally, theoretical discussions are validated with experimental field data.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献