Position/Force Tracking Impedance Control for Robotic Systems with Uncertainties Based on Adaptive Jacobian and Neural Network

Author:

Peng Jinzhu1ORCID,Yang Zeqi1,Ma Tianlei1ORCID

Affiliation:

1. School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

In this paper, an adaptive Jacobian and neural network based position/force tracking impedance control scheme is proposed for controlling robotic systems with uncertainties and external disturbances. To achieve precise force control performance indirectly by using the position tracking, the control scheme is divided into two parts: the outer-loop force impedance control and the inner-loop position tracking control. In the outer-loop, an improved impedance controller, which combines the traditional impedance relationship with the PID-like scheme, is designed to eliminate the force tracking error quickly and to reduce the force overshoot effectively. In this way, the satisfied force tracking performance can be achieved when the manipulator contacts with environment. In the inner-loop, an adaptive Jacobian method is proposed to estimate the velocities and interaction torques of the end-effector due to the system kinematical uncertainties, and the system dynamical uncertainties and the uncertain term of adaptive Jacobian are compensated by an adaptive radial basis function neural network (RBFNN). Then, a robust term is designed to compensate the external disturbances and the approximation errors of RBFNN. In this way, the command position trajectories generated from the outer-loop force impedance controller can be then tracked so that the contact force tracking performance can be achieved indirectly in the forced direction. Based on the Lyapunov stability theorem, it is proved that all the signals in closed-loop system are bounded and the position and velocity errors are asymptotic convergence to zero. Finally, the validity of the control scheme is shown by computer simulation on a two-link robotic manipulator.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Task space control of the robot manipulators with adaptive fuzzy global fast terminal sliding mode control in presence of dynamic and kinematic uncertainties;International Journal of Adaptive Control and Signal Processing;2023-11-03

2. Robot Arm End-Effector Force Tracking Impedance Control with Sliding Perturbation Observer-Based Estimated Environment Force;2023 23rd International Conference on Control, Automation and Systems (ICCAS);2023-10-17

3. Research on optimization of human-machine interaction control strategy for exoskeleton based on impedance control;Journal of Mechanical Science and Technology;2023-02-27

4. Adaptive fractional-order admittance control for force tracking in highly dynamic unknown environments;Industrial Robot: the international journal of robotics research and application;2023-02-01

5. Event-Triggered Adaptive Neural Impedance Control of Robotic Systems;IEEE Transactions on Neural Networks and Learning Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3