Studying the Role and Molecular Mechanisms of MAP4K3 in Sorafenib Resistance of Hepatocellular Carcinoma

Author:

Shi Yi12ORCID,Mo Xiaofei3,Hong Simei4,Li Tianbao3,Chen Baozhen1,Chen Gang14ORCID

Affiliation:

1. Departments of Molecular Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China

2. The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350014, China

3. Geneis Beijing Co., Ltd., Beijing 100102, China

4. Departments of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China

Abstract

Sorafenib is the first FDA-approved therapeutic drug for molecular target medication on advanced-stage hepatocellular carcinoma. It is reported that sorafenib could improve the survival of progression-free patients for 4 to 6 months; however, most of the patients developed drug resistance. Thus, it is critical to reveal the biological mechanisms behind sorafenib resistance. In this study, a sorafenib-resistant model was developed by exposing HepG2 cells to sorafenib with gradient increasing concentration, and the resistance-related genes were screened by microarray. Real-time qPCR was used to validate selected gene expression of the resistance model, and lentivirus vector-mediated RNA interference was applied for specific gene knockdown. In addition, high-throughput High Celigo Select (HCS) and flow cytometry were used to measure the effect on cellular proliferation and apoptosis. As a result, our study established a sorafenib-resistant model with IC50 of 9.988 μM. The Affymetrix expression profile of the sorafenib-resistant model showed 35 resistant-related genes, and 91.4% of the resistant genes showed upregulation in HepG2 resistance cells. In addition, 20 genes were knocked down to measure cell proliferation, and MAP4K3 with high proliferation inhibiting phenotype was chosen for further study. Meanwhile, the HCS results revealed that shMAP4K3 transfection could downregulate resistant cell proliferation, and the flow cytometry results showed that cell apoptosis was significantly increased in the MAP4K3 knockdown group. In summary, MAP4K3 is a novel molecular marker for improving the drug sensitivity of sorafenib treatment in hepatocellular carcinoma.

Funder

Science and Technology Program of Fujian Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3