Potential Drug Prediction of Glioblastoma Based on Drug Perturbation-Induced Gene Expression Signatures

Author:

Zhu Bochi1,Mao Xijing1,Man Yuhong1ORCID

Affiliation:

1. Department of Neurology, The Second Hospital of Jilin University, Changchun City, Jilin Province, 130041, China

Abstract

Objectives. Glioblastoma (GBM) is a malignant brain tumor which is the most common and aggressive type of central nervous system cancer, with high morbidity and mortality. Despite lots of systematic studies on the molecular mechanism of glioblastoma, the pathogenesis is still unclear, and effective therapies are relatively rare with surgical resection as the frequently therapeutic intervention. Identification of fundamental molecules and gene networks associated with initiation is critical in glioblastoma drug discovery. In this study, an approach for the prediction of potential drug was developed based on perturbation-induced gene expression signatures. Methods. We first collected RNA-seq data of 12 pairs of glioblastoma samples and adjacent normal samples from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by DESeq2, and coexpression networks were analyzed with weighted gene correlation network analysis (WGCNA). Furthermore, key driver genes were detected based on the differentially expressed genes and potential chemotherapeutic drugs and targeted drugs were found by correlating the gene expression profiles with drug perturbation database. Finally, RNA-seq data of glioblastoma from The Cancer Genome Atlas (TCGA) dataset was collected as an independent validation dataset to verify our findings. Results. We identified 1771 significantly DEGs with 446 upregulated genes and 1325 downregulated genes. A total of 24 key drivers were found in the upregulated gene set, and 81 key drivers were found in the downregulated gene set. We screened the Crowd Extracted Expression of Differential Signatures (CREEDS) database to identify drug perturbations that could reverse the key factors of glioblastoma, and a total of 354 drugs were obtained with p value < 10-10. Finally, 7 drugs that could turn down the expression of upregulated factors and 3 drugs that could reverse the expression of downregulated key factors were selected as potential glioblastoma drugs. In addition, similar results were obtained through the analysis of TCGA as independent dataset. Conclusions. In this study, we provided a framework of workflow for potential therapeutic drug discovery and predicted 10 potential drugs for glioblastoma therapy.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3