An Improved Sanitization Algorithm in Privacy-Preserving Utility Mining

Author:

Liu Xuan12ORCID,Chen Genlang12,Wen Shiting12,Song Guanghui12

Affiliation:

1. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China

2. Zhejiang University Ningbo Research Institute, Ningbo 315100, China

Abstract

High-utility pattern mining is an effective technique that extracts significant information from varied types of databases. However, the analysis of data with sensitive private information may cause privacy concerns. To achieve better trade-off between utility maximizing and privacy preserving, privacy-preserving utility mining (PPUM) has become an important research topic in recent years. The MSICF algorithm is a sanitization algorithm for PPUM. It selects the item based on the conflict count and identifies the victim transaction based on the concept of utility. Although MSICF is effective, the heuristic selection strategy can be improved to obtain a lower ratio of side effects. In our paper, we propose an improved sanitization approach named the Improved Maximum Sensitive Itemsets Conflict First Algorithm (IMSICF) to address this issue. It dynamically calculates conflict counts of sensitive items in the sanitization process. In addition, IMSICF chooses the transaction with the minimum number of nonsensitive itemsets and the maximum utility in a sensitive itemset for modification. Extensive experiments have been conducted on various datasets to evaluate the effectiveness of our proposed algorithm. The results show that IMSICF outperforms other state-of-the-art algorithms in terms of minimizing side effects on nonsensitive information. Moreover, the influence of correlation among itemsets on various sanitization algorithms’ performance is observed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3