PHUIMUS: A Potential High Utility Itemsets Mining Algorithm Based on Stream Data with Uncertainty

Author:

Wang Ju1ORCID,Liu Fuxian1,Jin Chunjie1

Affiliation:

1. Air Force Engineering University, Xi’an, China

Abstract

High utility itemsets (HUIs) mining has been a hot topic recently, which can be used to mine the profitable itemsets by considering both the quantity and profit factors. Up to now, researches on HUIs mining over uncertain datasets and data stream had been studied respectively. However, to the best of our knowledge, the issue of HUIs mining over uncertain data stream is seldom studied. In this paper, PHUIMUS (potential high utility itemsets mining over uncertain data stream) algorithm is proposed to mine potential high utility itemsets (PHUIs) that represent the itemsets with high utilities and high existential probabilities over uncertain data stream based on sliding windows. To realize the algorithm, potential utility list over uncertain data stream (PUS-list) is designed to mine PHUIs without rescanning the analyzed uncertain data stream. And transaction weighted probability and utility tree (TWPUS-tree) over uncertain data stream is also designed to decrease the number of candidate itemsets generated by the PHUIMUS algorithm. Substantial experiments are conducted in terms of run-time, number of discovered PHUIs, memory consumption, and scalability on real-life and synthetic databases. The results show that our proposed algorithm is reasonable and acceptable for mining meaningful PHUIs from uncertain data streams.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3