Effect of Carvacrol, TRP Channels Modulator, on Cardiac Electrical Activity

Author:

Almanaitytė Mantė1,Jurevičius Jonas1,Mačianskienė Regina1ORCID

Affiliation:

1. Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania

Abstract

Despite the wide application of carvacrol (CAR) in medicines, dietary supplements, and foods, there is still insufficient electrophysiological data on the mechanisms of action of CAR, particularly with regard to heart function. Therefore, in this study, we attempted to elucidate whether CAR, whose inhibitory effect on both cardiac and vascular TRPM7 and L-type Ca2+ currents has been demonstrated previously, could modify cardiac electrical activity. We used a combination of optical mapping and microelectrode techniques to track the action potentials (APs) and the spread of electrical activity in a Langendorff-perfused rabbit heart model during atrial/endo/epicardial pacing. Simultaneously, ECG recordings were acquired. Because human trials on CAR are still lacking, we tested the action of CAR on human ventricular preparations obtained from explanted hearts. Activation time (AT), AP duration (APD), and conduction velocity maps were constructed. We demonstrated that at a low concentration (10 μM) of CAR, only marginal changes in the AP parameters were observed. At higher concentrations (≥100 μM), a decrease in AP upstroke velocity (dV/dtmax), suggesting inhibition of Na+ current, and APD (at 50 and 90% repolarization) was detected; also slowing in the spread of electrical signals via the atrioventricular node was observed, suggesting impaired functioning of Ca2+ channels. In addition, a decrease in the T-wave amplitude was seen on the ECG, suggesting an impaired repolarization process. Nevertheless, those changes occurred without a significant impact on the resting membrane potential and were reversible. We suggest that CAR might play a role in modulating cardiac electrical activity at high concentrations.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3