Machine Learning and Electrocardiography Signal-Based Minimum Calculation Time Detection for Blood Pressure Detection

Author:

Nour Majid1ORCID,Kandaz Derya2,Ucar Muhammed Kursad2,Polat Kemal3ORCID,Alhudhaif Adi4ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Electrical-Electronics Engineering, Faculty of Engineering, Sakarya University, 54187 Sakarya, Turkey

3. Department of Electrical and Electronics Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu 14280, Turkey

4. Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia

Abstract

Objective. Measurement and monitoring of blood pressure are of great importance for preventing diseases such as cardiovascular and stroke caused by hypertension. Therefore, there is a need for advanced artificial intelligence-based systolic and diastolic blood pressure systems with a new technological infrastructure with a noninvasive process. The study is aimed at determining the minimum ECG time required for calculating systolic and diastolic blood pressure based on the Electrocardiography (ECG) signal. Methodology. The study includes ECG recordings of five individuals taken from the IEEE database, measured during daily activity. For the study, each signal was divided into epochs of 2-4-6-8-10-12-14-16-18-20 seconds. Twenty-five features were extracted from each epoched signal. The dimension of the dataset was reduced by using Spearman’s feature selection algorithm. Analysis based on metrics was carried out by applying machine learning algorithms to the obtained dataset. Gaussian process regression exponential (GPR) machine learning algorithm was preferred because it is easy to integrate into embedded systems. Results. The MAPE estimation performance values for diastolic and systolic blood pressure values for 16-second epochs were 2.44 mmHg and 1.92 mmHg, respectively. Conclusion. According to the study results, it is evaluated that systolic and diastolic blood pressure values can be calculated with a high-performance ratio with 16-second ECG signals.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid Alzheimer's Disease Diagnosis Using Advanced Artificial Intelligence Algorithms;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-04

2. A Novel Machine Learning-based Diagnostic Algorithm for Detection of Onychomycosis through Nail Appearance;Sakarya University Journal of Science;2023-08-25

3. Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve;Journal of Cardiovascular Development and Disease;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3